

Global Mitigation of Non-CO₂ Greenhouse Gases: 2010 - 2030

Shaun Ragnauth – U.S. EPA

Internation Energy Workshop, 2015 Abu Dhabi, UAE

Non-CO₂ Global Mitigation Report: 2010-2030 Background

- USEPA has developed a comprehensive global mitigation analysis for non-CO₂ GHGs, covering:
 - All non-CO₂ greenhouse gases (methane, nitrous oxide, high GWP gases)
 - All emitting sectors (energy, waste, agriculture, and industrial processes)
 - Coal mining (CH₄)
 - Oil and natural gas systems (CH₄)
 - Solid waste management (CH₄)
 - Wastewater (CH₄, N₂O)
 - Specialized industrial processes (N₂O, PFCs, SF₆, HFCs)
 - Agriculture (CH₄, N₂O).
 - Global coverage disaggregated at the country level
 - 2010 2030
- Coupled with baseline emission projections from EPA's non-CO₂ projections report
- Has undergone an external peer review process
- Builds on work started in 1999
 - 2001 & 1999 EPA reports on CH₄ and N₂O domestic mitigation potential
 - Stanford Energy Modeling Forum EMF-21
 - 2006 Global Mitigation of Non-CO₂ Greenhouse Gases
- Provides improved data to better understand the costs and opportunities for reducing non-CO₂ greenhouse gas emissions.

Global Mitigation of Non-CO₂ Greenhouse Gases (USEPA, 2013)

Data Sources and Models

- Data sources
 - Emissions baseline:
 - Domestic U.S. Inventory of Greenhouse Gases and Sinks
 - International regions Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030
 - Emissions projections:
 - Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030 (EPA 430-D-11-003)
 - Sector specific models for agriculture sources
 - DayCent (croplands)
 - IMPACT (livestock)
 - DNDC (rice)
 - Labor, energy and commodity prices:
 - Labor U.S. BLS
 - Energy EIA AEO 2010, International Energy Statistics
 - Materials UNCTAD Statistical Database
 - Mitigation and cost estimates:
 - Sector specific engineering and cost studies
 - Industry reported and supplied data
 - U.S. EPA Clean Watersheds Needs Survey
- Models
 - MAC model (EPA)
 - GAMS based model allows for fast updates to MACs based on new projections, cost, mitigation data, or other updated parameters
 - DNDC Model (Applied Geosolutions/UNH)
 - Rice mitigation
 - DayCent Model (University of Colorado)
 - Croplands
 - IMPACT Model (IFPRI)
 - Vintaging Model (EPA)

Methodology

MACs provide information on the amount and cost of emissions reductions that can be achieved in a given sector

- Abatement options are represented through bottom-up engineering cost analysis
- Costs, benefits, and potential mitigation is assessed for each option
- For each sector and region the MAC curve is determined by the series of breakeven price calculations for the suite of available options
- Each point reflects the average price and reduction potential for a given abatement option

Methodology Continued – Abatement Options

- Abatement option emission reduction
 - Technical Effectiveness * Baseline Emissions = Emission Reduction
 - Technical effectiveness determined by
 - Technical applicability
 - Portion of sector wide baseline option is applicable to
 - Market share
 - Avoids double counting of competing options
 - Reduction efficiency
 - Technically achievable abatement from an option

Technical Applicability (%)	x	Market Share ^a (%)	х	Reduction Efficiency (%)	=	Technical Effectiveness (%)				
						Technical Effectiveness (%)	x	Baseline Unit Emissions (MtCO2e)	=	Unit Emission Reduction (MtCO2e)
Percentage of total baseline emissions from a particular emissions source to which a given option can be potentially applied.		Percentage of technically applicable baseline emissions to which a given option is applied; avoids double counting among competing		Percentage of technically achievable emissions abatement for an option after it is applied to a given emissions stream		Percentage of baseline emissions that can be reduced at the national or regional level by a given option.		Emissions stream to which the option is applied		Unit emission reductions
		options								5

Example Mitigation Options Modeled

GLOBAL MITIGATION OF NON-CO2 GREENHOUSE GASES

Table C-1: Example Break-Even Prices for Natural Gas and Oil System Technology Options in 2010												
Abatement Measure	System Component/ Process	Reduced Emissions	Annualized Capital Costs (\$/tCO2e)	Annual Cost (\$/tCO ₂ e)	Annual Revenue (\$/tCO2e)	Tax Benefit of Depreciation (\$/tCO ₂ e)	Break-Even Price (\$/tCO ₂ e)	Reduction				
Oil and Gas Production	PIOCESS	(tCO ₂ e)	(\$/10020)	(\$/ICO2e)	(\$/10028)	(\$/10028)	(\$/ICO2e)	(MtCO ₂ e)				
Convert gas pneumatic controls to instrument air	Pneumatic device vents	71.0	\$335.68	\$441.41	\$10.01	\$82.50	\$684.58	15.29				
Directed inspection & maintenance at gas production facilities	Chemical injection pumps	15.2	\$0.00	\$440.34	\$10.01	\$0.00	\$430.33	0.44				
Directed inspection & maintenance at gas production facilities	Deepwater gas platforms	6,687.0	\$0.00	\$7.48	\$10.01	\$0.00	-\$2.53	0.21				
Directed inspection & maintenance at gas production facilities	Non-associated gas wells	2.8	\$0.00	\$289.00	\$10.01	\$0.00	\$279.00	0.97				
Directed inspection & maintenance at gas production facilities	Pipeline leaks	5.0	\$0.00	\$16.44	\$10.01	\$0.00	\$6.43	1.78				
Directed inspection & maintenance at gas production facilities	Shallow water gas platforms	1,584.6	\$0.00	\$21.04	\$10.01	\$0.00	\$11.03	2.57				
Flaring instead of venting on offshore oil platforms	Offshore platforms, shallow water oil, fugitive, vented and combusted	7,929.0	\$4,584.45	\$627.65	\$10.01	\$929.86	\$4,272.24	8.94				
Install flash tank separators on dehydrators	Dehydrator vents	18.1	\$402.90	\$0.00	\$10.01	\$122.18	\$270.71	0.75				
Installing catalytic converters on gas fueled engines and turbines	Gas engines - Exhaust vented	36,389.4	\$0.06	\$0.12	\$0.00	\$0.01	\$0.16	2.55				
Installing electronic starters on production field compressors	Compressor starts	2.7	\$266.82	\$2,172.15	\$10.01	\$65.58	\$2,363.39	0.07				
Installing plunger lift systems in gas wells	Non-associated gas wells	2.4	\$1,042.59	-\$5,818.60	\$10.01	\$316.18	-\$5,102.19	0.82				
Installing plunger lift systems in gas wells	Well clean ups (LP Gas Wells)	423.25	\$5.87	-\$32.73	\$10.01	\$1.78	-\$38.65	29.93				
Installing plunger lift systems in gas wells	Gas well workovers	0.8	\$2,960.86	-\$16,52 4.21	\$10.01	\$897.92	-\$14,471.28	0.01				
Installing surge vessels for capturing blowdown vents	Compressor BD	0.8	\$43,398.61	\$34,987.60	\$10.01	\$8,802.49	\$69,573.71	0.02				
Installing surge vessels for capturing blowdown vents	Vessel BD	0.0	\$2,088,733.32	\$1,683,919.51	\$10.01	\$423,655.25	\$3,348,987.59	0.01				

(continued)

Baseline and Projections

- Non-Ag sectors utilize USEPA 2012 global projections
- Ag sector projections are based on DNDC, DayCent, and IFPRI IMPACT
- 2030 projected non-CO2 GHG emissions is over 15 Gt
- Top emitting sectors in 2030:

Source: Global Anthropogenic Non-CO₂ Greenhouse Gas Emissions: 1990-2030. USEPA, 2012

Aggregate Results – Global MAC (2030)

Worldwide cost-effective mitigation potential is 1,772 MtCO₂e in 2030

Key Findings

Total technically feasible global mitigation from non-CO₂ GHG sources in 2030 is over 3,500 MtCO₂e

Aggregate Results – MACs by Sector (2030)

Globally, the sectors with the greatest potential for mitigation of non-CO₂ greenhouse gases are the energy and industrial process sectors.

Aggregate Results – MACs by GHG (2030)

- At a cost-effective level, the potential for methane mitigation is greater than 1000 MtCO₂eq.
- The potential for reducing methane emissions grows two-fold as the breakeven price rises from \$0 to \$20/tCO₂eq.
- While less than that of methane, nitrous oxide and high-GWP gases exhibit significant cost-effective mitigation potential.

Non-CO2 Reductions (MtCO2e)

Aggregate Results – MACs by Region (2030)

China and the U.S. are the top two contributors to global mitigation potential with cost effective mitigation of 249 and 165 MtCO₂e respectively.

MACs - U.S. and China

MACs by Sector - Industrial (2030)

- Refrigeration/AC
 - Global emissions associated with Ref/AC projected to increase ~300% between 2015 and 2030
 - Mitigation potential
 - Model evaluates ~ 20 mitigation options
 - Maximum global mitigation potential in 2030 is ~ 1000 MtCO₂e, 82%
 - \$5/tCO₂e global mitigation is over 600 MtCO₂e

Source: Global Anthropogenic Non-CO $_2$ Greenhouse Gases: 1990-2030, USEPA 2012

MACs by Sector - Energy (2030)

- Global emissions associated with natural gas and oil systems projected to increase ~19% (~335 MtCO₂e) between 2015 and 2030
- Global emissions associated with coal mining projected to increase 25% (154 MtCO₂e) between 2015 and 2030
- Total global technically feasible mitigation potential is over 1500 MtCO₂e

Source: Global Anthropogenic Non-CO₂ Greenhouse Gases: 1990-2030, USEPA 2012

Model Results – Oil and Gas (2030)

2025 Emissions Reductions by Segment

Abatement Measures

Emissions reductions by technology in 2030 at \$0/tCO2e and at higher prices.

Reductions achievable at costs greater than \$0/tCO,e

Prior Study Comparison

- Compared to EPA 2006 Non-CO₂ Mitigation Report, total aggregate abatement potential is 5% higher
 - Drivers include
 - Model updates
 - New sectors and abatement options
 - Updated inputs (energy prices, capital costs, O&M costs, etc.)

Summary

- Significant cost-effective mitigation exists from non-CO₂ sources with mitigation options that are available today
- Energy sector sources are a major source of relatively low cost abatement potential
- Despite potential for project level cost savings and environmental benefits, barriers to mitigating non-CO₂ emissions (particularly CH₄) continue to exist:
 - Traditional industry practices
 - Regulatory and legal issues
 - Uncertain investment climate
- Report and data set can feed in to a number of climate analytical needs
 - CGE modeling
 - Analysis of cost and availability of mitigation opportunities
 - Climate policy analysis

More Information

Mitigation Report available on the web at:

http://www.epa.gov/climatechange/EPAactivities/economics/ nonco2mitigation.html

Projections Report available on the web at:

http://www.epa.gov/climatechange/EPAactivities/economics/ nonco2projections.html

Shaun Ragnauth US EPA – Climate Change Division 1-202-343-9142 ragnauth.shaun@epa.gov

